If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-84=0
a = 1; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·1·(-84)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*1}=\frac{0-4\sqrt{21}}{2} =-\frac{4\sqrt{21}}{2} =-2\sqrt{21} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*1}=\frac{0+4\sqrt{21}}{2} =\frac{4\sqrt{21}}{2} =2\sqrt{21} $
| 6x2-11x=95 | | m=1-4-2-3= | | 7q-9=5 | | m=1-4 | | 8-9x-20+22x-22+23x=240 | | 5(-6x-9)=-165 | | 17-5x=22 | | 46x-32=46x+23 | | m=1/4+2/3= | | t-2+7=-3 | | 10(5x-3)=5(x-5)+75 | | 0.66667(3x+9)=-2(2x=6) | | 4/7x=2/5*34-2/5x | | 5.4+6x=6 | | z=1/5-3/5= | | X+42=85;b=10 | | 50-2(17+x)=24 | | −0.6+4.9x=−20.2 | | 5(-6x+9)=-195 | | x-(x*0.08)=94.30 | | z=1/5+3/5= | | 5(-6x+9)=195 | | 3x-5=-5x-3 | | 7(x+4.3)-3/5=467 | | 3e+5=23 | | 5x+3=x-15 | | -2y+-42=-12 | | 4x+(7x-9)=90 | | 5x+43x+2x=543 | | -3(x-9)=16 | | 4x+(x-9)=90 | | k=4-17= |